
Review of Economic Research on Copyright Issues, 2007, vol. 4(1), pp. 3-14

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS
BEEN DONE SO FAR?

RICHARD WATT

Abstract. The particular case of software seems to have stretched the patent-
copyright divide to the point of breakage. Inspite of being traditionally ex-
cluded from patent, software is an obvious case of a single creation that em-
bodies both “expression” and “innovation”, and so strong arguments exist for
software to be both copyrightable and patentable material. The legal profes-
sion has looked carefully at the patentability of software over the past 15 years
or so, both from a fully legal perspective, and using economic-type arguments.
But we are still waiting for the economics profession per sé to set to work on
this issue. Here, I shall go through some of the most well known arguments sur-
rounding the protection of software, and then put forward a personal opinion
as to what theoretical economists are likely to add, if and when they include
this important question on their research agendas.

1. Introduction

“It is crystal clear that software is entitled to both copyright and
patent protection. It should also be crystal clear that these forms
of protection should not be mutually exclusive. There is no justifi-
cation whatsoever in the Constitution, the federal statutes, or the
case law to justify a denial of joint patent and copyright protection
for software.” (Einhorn, 1990 p. 278)

The above quote is now more than 15 years old, and in spite of that, many
parts of the world are still debating whether or not software protection should or
should not be extended from copyright to include patent as well. Together with this
quandrum, software is now also increasingly released under open source licenses,
a mechanism that seems to fly in the face of both traditional forms of intellectual
property protection.
Ever since it was first conceived formally and embodied into legal doctrine, in-

tellectual property has been divided into two principal branches — patents and
copyrights. Copyrights protect expression of ideas, and patents protect innovative
ideas themselves. While initially these two categories were quite likely sufficient
to provide an all encompassing and mutually exclusive description of all possible
creations of the mind, it is becoming increasingly clear that this is no longer true.
It has been repeatedly noted by legal scholars that there exist many cases of intel-
lectual creations that require new sui generis regimes (see, for example, Reichman
1994), and it is also clear that there are creations that can satisfy the basic defini-
tions of both copyright and patent. Most notably, the case of computer software has
been repeatedly discussed; see for example Samuleson et al. 1994), since software
seems to provide the most important example of a creation with clear aspects of

3

4 RICHARD WATT

both copyrightable and patentable material, and will surely continue to be at the
forefront of the intersection between patent and copyright.1

The current generation of creators and consumers of creations have come to
inherit a (largely) bimodal system of intellectual property rights. More to the
point, historically the creators of software have been forced into the particular
box of copyright.2 Digitally speaking, software is indistinguishable from any other
digital product (text, music, photos, databases, sounds, graphics, videos, etc.), and
as such it is (somewhat) logical to protect software under the same regime, i.e.
copyright. But, software is different as it also has a clear aspect of functionality
and innovation, which has led to the argument that patent is also relevant. But in
spite of the obvious innovative nature of software products, patent protection has
been hard to come by, and in Europe at least, largely impossible.
The principal defining aspect of the problem is that it is not always easy to sepa-

rate ideas from expression. When innovation and expression are too intermingled to
be easily separated and protected independently, the protection of expression may,
inadvertently, provide protection for the idea expressed.3 From a logical standpoint,
if a single creation does contain both protectable ideas and protectable expression,
we would expect that each regime of intellectual property law protects different,
mutually exclusive, aspects of the creation. The use of one or the other regime is
fine for any creation in which the expression of ideas and the ideas themselves can
be fully and completely separated from each other.4 But, what shall we do when
the expression of an idea is an integral part of the idea itself (i.e. expression and
idea are in some way inseparable)? Such may be the case of software. Copyright
alone either leaves important aspects unprotected, or it overprotects (due to ease
of grant, and long duration, etc.). Patent alone, it is argued, leaves object code
unprotected and thus, presumably, susceptible to copying, and the inventive step
requirement will almost surely not be met for software developments. Using both
may clearly overprotect, as some aspects will be protected twice. Additionally, we
must deal with the special market-type characteristics of software, namely the huge
network economies of scale, and the importance of interfaces between programmes.

1The fact that what is copyrightable and what is patentable can sometimes be debateable is
is not really a recent development. As early as 1930 Justice Learned Hand stated “Nobody has
ever been able to fix that boundary [between ‘ideas’ and ‘expression’] and nobody ever can.” It
is, however, something that has become more and more accentuated with the general passage
of time, with the introduction of new technologies, and with the advent of new embodiments of
intellectual products (above all, the digital environment for copyrightable creations).

2It is interesting to ask why software was copyright protected in the first place. The reason
seems to be that software was first shown to lawyers and Judges as source code, which looks just
like any other literary work. Also, copyright avoided the obvious complications of deciding on
inventive step, novelty, industrial application, etc. Furthermore, the precedent had already been
set by other new technological forms of representation that had also been collected together under
copyright. The (then) exclusionary mindset (either copyright or patent, but not both), led to
rejection of patentability (see Widdison 2000 for more on the reasons why copyright was set as
the default protection mechanism for software).

3On top of this, of course the “merger doctrine” limits the ability to protect in such cases of
intermingled expression and ideas.

4An interesting example could be the case of a novel, where the expression of the story is simple
to separate from the actual story being told. The expression is obviously copyright protected, but
I do not know of any case in which the storyline itself is patented as an idea, most likely because
it would not stand up to the industrial applicability requirement.

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS BEEN DONE SO FAR? 5

The current paper attempts to briefly summarise the way the legal academic
profession has dealt with the problem of the legal protection of software, and to
put forward some opinions as to how the academic economics profession is likely
to go about analysing the same problem. I have deliberately set aside the issue of
open source, which is delt with in the papers by Leveque and Meniere, and that of
Koski in this issue.

2. The Special Case of Software: What Has Been Done?

The problem of software has been considered by the legal profession in far too
many papers to mention here. However, I will mention a few of the more salient ones
of the bunch, and I will also attempt to classify the types of argument that occur.
First and foremost, though, I feel that it is worthwhile pointing out that in spite of
the inclusion of such terms as “economics perspective”, or “economic approach” in
the titles of several of these papers, the analysis is not at all rigorously presented,
as strict economics-types would expect.
Basically, there seem to be four approaches to the problem of the legal protection

of software (and indeed of almost any type of creation that is an outlier to the
current patent/copyright regime):

(1) we can argue that, under proper analysis, software can indeed be appropri-
ately protected by copyright alone (the “status quo” approach);

(2) we can argue that copyright alone is insufficient, but that the existing
regime of patent can appropriately complete the shortfalls of copyright for
protecting software, so the two existing regimes are sufficient and workable
(the “make it fit” approach);

(3) we can argue that for software a special sui generis regime is required, with
some aspects of both copyright and of patent (the “sui generis” approach);

(4) we can argue that we should abandon the entire existing regime, and start
anew with a clean slate, and find a system of intellectual property rights
that can properly cater for all intellectual products, software included (the
“clean slate” approach).

2.1. The “status quo” approach. The “status quo” approach to software at-
tempts to show that, under careful scrutiny, software can be appropriately pro-
tected by copyright alone. Ginsburg (1994) is a good example of the this type of
argument. The question of whether or not copyright alone is suitable for software
is usually posed as whether structure, sequence and organisation are protected as
“non-literal elements” of the protected program code. A close analogy could be the
copyright in a novel or play, which is quite generally recognised to extend beyond
the pure language to more or less detailed elements of the plot itself. But for most
such analogies, copyright is rather thinner than what is required for software.
Never-the-less, Ginsburg (1994, p. 2560) argues “... all Circuits that have ad-

dressed the question agree that, in principle, copyright protects not only literal
code, but also non-literal elements of a program, such as its structure, sequence
and organization.” Furthermore, again according to Ginsburg, copyright can work
for software since it has extended to many other items that are far more functional
than pure text; “... copyright also protects architectural plans, even though these
set forth instructions to construct a ‘functional’ object, a building. Moreover, since

6 RICHARD WATT

the 1990 Architectural Works Copyright Protection Act, it is clear that architec-
tural plans are infringed not only by copying in the initial format, but also by
following the plans to execute the building ...” (Ginsburg 1994, p. 2567).
The main argument for continuing with the current copyright regime alone, and

disallowing patent altogether, seems to be based on software innovations not being
able to satisfy the incremental step requirement of current patent law anyway, and
on the argument that if software were patented, then there would ensue a “patent
thicket” type of problem which would inefficiently hinder further developments.
Also, so the argument goes, the discretion and good judgement of the courts will
ensure that copyright is used properly, extending to more than pure literal code,
but not choking off the sequential innovation that clearly defines the development
of software. Finally, the extension of patent to include software will almost surely
lead to bad decisions on patent granting, and this would be very costly to undo.
Thus, the pundants of the status quo regime, that is, sticking with copyright alone,
can be seen to be quite the risk averse types, who predicate absolute caution of
moving into the unknown.

2.2. The “make-it-fit” approach. This approach to the problem attempts to
separate software into functional and non-functional aspects, and protect each in-
dependently (and separately) using both the copyright and the patent regimes in
their existing formats. The argument is that copyright works, but it needs to be
augmented by patent, and above all, the existing IP regime seems to be suitable
without need for any reforms. The writings of Prof. Dennis Karjala (see, for ex-
ample, Karjala 1998) provide good examples of the make-it-fit approach.
Karjala (1998) considers that once we identify those aspects of software that are

purely functional, and those that are not, each can be protected by only one intel-
lectual property regime — functional aspects by patent, and non-functional aspects
by copyright.5 Karjala argues that copyright is suitable to protect literal code (and
mechanical or electronic translations thereof), but that higher level aspects, like
structure, sequence, organisation and design should be considered patent subject
matter. His underlying argument is that to deny patent protection means that
software would be protected entirely by copyright, which would over-protect the
functional aspects. Thus copyright and patent are seen to be complementary to
each other, at least for the case of software.
Never-the-less, the make-it-fit approach does seem to carefully avoid the problem

of unravelling expression from ideas expressed. In particular, Karjala (1988, p. 62)
states “. . . the difficulty of drawing the line (between expression and innovation) in
specific copyright cases does not relieve us of the obligation to do so.”, something
that economists would likely dispute! The make-it-fit approach would have us leave
the problem of defining inventive step, non-obviousness, etc. to properly informed
patent officials, and thereby proponents of this approach appear to skillfully avoid
the problem altogether.

5This reflects the decision in Whelan Assoc. v. Jaslow Dental Lab, Inc. (797 F. 2d 1222, 230
USPQ 481 (3d Cir. 1986)), where the court attempted to fix the boundary between expression
and idea; “The line between idea and expression may be drawn with reference to the end sought
to be achieved by the work in question. In other words, the purpose or function of a utilitarian
work would be the work’s idea, and everything that is not necessary to that purpose or function
would be part of the expression of the idea.”

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS BEEN DONE SO FAR? 7

Other supporters of the make-it-fit approach are not hard to find. In particular,
Einhorn (1990) is an early example of this approach (see the quote at the start
of this paper). Einhorn’s argument is that joint protection works since patent
and copyright are “very different types of protection, each protecting computer
programming at different levels of generality and to differing extents.”

2.3. The “sui generis” approach. Advocates of the sui generis solution to soft-
ware are certainly the more plentiful of the legal-type papers. It stems from an
existing branch of legal literature that analyses the apparent breakdown of the
existing IP regimes to deal with certain creations. For example Reichman (1994,
pp. 2500-01) notes that “... the nineteenth-century vision that subdivided world
intellectual property law into discrete and mutually exclusive compartments for
industrial and artistic property has irretrievably broken down. The theory that
the classical patent and copyright models coherently address the way intellectual
creations behave has been discredited by its inability to deal adequately with the
behavior of many commercially valuable, cutting-edge intellectual creations. . . .
Instead of a clear line of demarcation, there is a permeable line of demarcation that
allows an intermediate zone of marginal subject matters to coexist within a space
that the classical system formally ignores. ”.
In a more recent paper, Widdison (2000) envisages that the TRIPS agreement

implies that software cannot avoid some sort of involvement with patent, although
the author is wary of the effects on the balance of incentives, and of the presumable
increase in black market activity, if patent is applied in its current form. Widdison’s
argument is that a completely new arrangement is required, characterised by a
protection mechanism with:

(1) no account of novelty, inventive step or industrial application, but only a
demonstration of originality (just like copyright),

(2) proper protection of all aspects of a programme — internal design mecha-
nisms, literal code, and functional characteristics,

(3) short duration, perhaps 5 years renewable annually,
(4) clear allowance for reverse engineering for the purpose of studying and

understanding the concepts and techniques used, and
(5) a specific allowance for royalty license payments for all or part of the pro-

gramme.

More recently, but in an unpublished paper, Barwolff (2002) argues for a sui
generis regime that is much more closely related to copyright than to patent. Indeed
he is very sceptical of the benefits of using patent, and indeed he thinks that
disallowing patent should be seriously considered, or at least making the grant of
patent very difficult to achieve. His suggestion is characterised by;

(1) full disclosure of interface information,
(2) copyright only if software is distributed along with source code for easier

understanding,
(3) availability of patent but only with a high threshold and with knowledgeable

patent examiners,
(4) compulsory licensing (at reasonable, non-discriminatory rates), and
(5) significantly limited duration.

The real fireworks on the patentability of software, however, appear in a series
of papers published in a symposium issue of the Columbia Law Review in 1994.

8 RICHARD WATT

The leading article in that symposium is Samuelson et al. (1994), who argue for
a sui generis regime, although they are not quite so specific about the general
characteristics of the new regime. The paper does, however, provide some very
useful insights of the underlying problem, and of why neither copyright nor patent
as currently defined, are suitable alone.
The key issue for software is that “... the primary source of value in a program

is its behavior, not its text.” (Samuleson et al., 1994, p. 2315). However copyright
can only protect the textual expression, and so the implication is that copyright
alone is insufficient for computer software. Indeed, Samuelson et al. go on to imply
that patent protection might be more adequate, since “... programs are, in fact,
machines (entities that bring about useful results, i.e. behavior) that have been
constructed in the medium of text (source and object code).” (Samuelson et al.,
1994, p. 2316).
Not withstanding, Samuelson et al. argue that patent protection of methods

alone is also inadequate for the case of computer software, since “... patent law re-
quires an inventive advance over the prior art before it grants protection. Protecting
incremental innovations in program behavior through patent law would thwart the
economic goals of the patent system: to grant exclusive rights only when an in-
novator has made a substantial contribution to the art and advanced competition
to a new level.” (Samuelson et al., 1994, p. 2346). So, the incremental nature of
software development can be seen to impede the utility of this legal paradigm as a
suitable protection method as well.
Hence, the argument in Samuelson et al. can be summarised as “... copyright

protects only text and text is largely independent of behavior; and incremental in-
novation cannot meet patent standards. Attempts to stretch the bounds of existing
regimes to protect the incremental innovation in software will result in either too
much or too little legal protection.” (Samuelson et al., 1994, p. 2365).
Therefore, according to Samuelson et al., in spite of the fact that computer soft-

ware does indeed seem to qualify for both copyright and patent protection (at least
in the US), neither paradigm is really suitable, and indeed “... the application of
both copyright and patent law to software innovations may impair the effectiveness
of both forms of protection. It has also created considerable uncertainty about the
scope of protection available from each.” (Samuelson et al., 1994, pp. 2346-7).

2.4. The “clean slate” approach. Finally, there is at least one very novel ap-
proach to the type of problem posed by software, that is not really a sui generis
regime. A sui generis suggestion would be designed to fit along aside both copy-
right and patent, but Dreyfuss (1992) suggests that a complete overhaul of the
entire intellectual property rights system itself is justified. Dreyfuss would remove
both copyright and patent in their current forms, and introduce an entirely new
regime that is able to cater for all types of intellectual creation. Rather than the
current situation in which we have two major protection regimes, and a whole host
of minor ones for specific outlying cases, we should attempt to define a new legal
system, with a single regime that can accommodate each possible case — that is,
attempt to have each and every separate and individual case defined as a simple
“special case” accommodated within a very general protection regime.
The rather radical suggestion of Dreyfuss appears to be based on the overall in-

adequacy of the current regimes to deal with intellectual creations, as was argued,

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS BEEN DONE SO FAR? 9

for example, by Reichman (1994). It is in response to this inadequacy that Drey-
fuss suggests a major overhaul; “The law has long had difficulties accommodating
information products within the copyright-patent regime. . .modern developments
make this regime unsuitable for the future. . . The time has therefore come to re-
think copyright and patent, to unify the theory of intellectual property in order to
create a system of law that is capable of providing the right incentives across the
entire domain of human intellectual endeavour.” (Dreyfuss 1993, pp. 233-4).
While Dreyfuss’ suggestion might appear, at first sight provocative and radical,

we should recall that with the onslaught of technology, and the general development
of social and cultural institutions, the details of the legal system must also vary.
The legal system needs to be mailable to social, economic and technological change
as it occurs. What was once a seemingly logical legal detail in the definition, char-
acterisation and protection of intellectual property in particular can very quickly
become obsolete. In that vein, one can formulate objections to the legal difference
that is established between patents and copyrights on several standpoints, that not
so long ago would not have been so logical. Many authors have noted that the cur-
rent division between patents and copyrights leaves some creations with insufficient
protection, while other creations are doubly protected. This is clear evidence of an
undermining of the very reason why two different laws exist in the first place.

3. What Have Economists Said?

The “economics of copyright” has dealt with the specific case of software in a
great many theoretical papers (see, for example, the survey by Amy Marshall in
this issue). However, while the issue of the extent of protection has been addressed,
the way this protection should be structured seems not to have been studied. As a
general rule, the economic theory of optimal protection introduces legal protection
somewhat indirectly, and in a variety of different forms; a cost function for copiers,
a stochastic indemnity (remedy) for rights holders, a demand function (more con-
cretely, a difference between realised and potential demand), etc. Most models that
are applicable to software could just as easily be referred to any other digital prod-
uct, and I have not found any published papers that deal specifically, and formally,
with the copyright vs. patent debate. Thus economists appear to have remained
largely silent on this question.6

A possible exception to the lack of economists’ input on the issue of the ap-
propriate structure of IP protection for the particular case of software is a working
paper by Baseman, Warren-Boulton and Woroch (1995). In that paper, the authors
conclude that copyright in its current guise requires some alterations (basically to
specifically exclude certain aspects of software, e.g. aspects that achieve the sta-
tus of de facto standard, and reverse engineering should be allowed). However the
paper does not mention the possibility of software patents at all.

4. What Would Economists Say?

At the risk of unjustly putting words into economists’ mouths, I will now at-
tempt to outline the type of reasoning that we could expect from a more or less

6One very well known economist, Paul Klemperer, has written on the topic, but rather than
in a formal paper, in the trade press (see Klemperer, 2004). In that article, Klemperer advocates
caution in extending software protection to include patent, and if of the opinion that software
patenting in USA has “gone too far”.

10 RICHARD WATT

detailed examination of the copyrightability cum patentatibility of software under
the economic theory microscope.
I think that it is fair to say that, with few exceptions, most authors who have

addressed the issue of the appropriate structure of protection of software have
come to the conclusion that neither copyright nor patent in exactly their current
formats, are suitable. The general tactic appears to be to take the existing regime
of copyright, to see how it would need to be altered in order to provide for the
appropriate protection, and then see how the final result compares to the current
patent format. In that sense, almost all commentators have advocated some sort
of sui generis regime, and the only point of debate seems to be how closely related
that regime should be to copyright, and how closely related it should be to patent.
A sui generis regime that is based on copyright and patent, would most likely be

seen by theoretical economists as some sort of “convex combination”, or weighted
average, of two extremes. If we imagine a multi-dimensional space, defined by
all of the variables involved in a full description of IP protection (e.g. duration,
innovative step, applicability, novelty, etc.), then copyright and patent are just two
particular points in that space. It appears to me that the clean-slate approach of
Dreyfuss is really just the recognition that such a parameter space exists, and that
space is what defines the limits to any protection regime. Different creations would
justifiably be given different protection schemes defined by different points in the
general space. If we do stick with copyright and patent as our two initial defining
points, and if we are interested in a sui generis regime based on these two starting
points, then we might imagine the straight line joining them acting as some sort
of constraint to a maximisation problem, where the objective function could be
some relevant definition of social welfare. Then the “optimal” protection regime
for software would occur where the social indifference curves reach a tangent on the
restraining line.
The problem, of course, is that social welfare is an impossible measure to ever

get a very realistic handle on, and so the final solution is totally dependent upon
the researcher’s initial point of view. Thus, perhaps the best we can ever hope
for is an informed opinion. Never-the-less, there is another way of approaching
the problem, that might very well appeal to economists. As opposed to their legal
colleagues, economists are more inclined to approach a problem like that facing us
without assuming any particular restriction on existing legal structures. Given a
detailed description of the particular characteristics of software, and the objectives
sought (e.g. the balance of incentives and access) an appropriate protection struc-
ture would be described, and only then perhaps compared with what currently
exists. Legal scholars, on the other hand, are more inclined to look at current
protection structures together with the outlying creation, and look to see how the
existing structure can be made good. Economists would tend to favour bolder, more
provocative and novel solutions to the problem, with a lower regard for exactly how
(or indeed if) the solutions can be instigated in any real-world economy. Now, of
course I do not propose to suggest that economists’ solutions are always nice in
theory but impractical, while the legal profession would suggest more practical but
theoretically deficient solutions. But I am suggesting that each group has many
valuable lessons to be learnt from the other, and dialogue between them would be

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS BEEN DONE SO FAR? 11

highly advantageous if a workable and theoretically sound solution is ever to be
found.7

Finally then, I would like to conclude by putting forward my own opinion, for
whatever it may be worth. As an economist, when I think about the question of
IP protection of software, I am willing to address the problem without restraining
myself to the historical accident that has led to it being copyright subject matter for
at least 30 years. Rather, I look at software for what it is — a necessary input to the
efficient functionality of a computer. Now, a computer is still largely a productive
tool, rather than simply a machine for reproducing previously created products
(mainly visual images and sounds). Thus, software seems to me to be described
much more closely as an input to a productive process (or an intermediate good),
rather than a work of authorship to be consumed for its own entertainment pleasure.
That is, despite the obvious fact that software can be expressed in exactly the same
way as almost all copyright subject matter — as an ordered sequence of symbols —,
software is not primarily intended for the same purpose as most other copyright
materials.8 Even a computer programme whose only purpose is to allow music to
be played on a computer is really no more a copyright good than is the internal
gadgetry and wiring of a radio! This all leads me to the conclusion that software
looks more like patent subject matter than it does copyright subject matter.9

The value of a computer programme is not to be found in its text, but rather
in what it commands a computer to do for us. It is a relatively simple matter to
write two different programmes (different in the sense that neither contains any
given string of symbols of reasonable length that is also present, in exactly the
same order, in the other programme) that would achieve exactly the same output
(e.g. visual screen displays) for each possible input (e.g. keystrokes). If a user is
not able to say which exact programme is being used to relate all possible inputs to
outputs (since that relationship is identical for both programmes), then we should
validly understand that the two programmes are formally identical, even though
they contain different expression. This is, of course, a patent type of argument,
under which what is important is a process that solves a problem (a relationship
between inputs and outputs, from the users point of view), and when two different
processes both solve the same problem in ways that are functionally identical, the
typical efficiency arguments behind patent law require that only one should be
allowed to survive.
Now, I should point out that there are certainly some aspects of computer pro-

grammes that should retain copyright rather than patent protection. Actual screen
designs, any characters and logos that appear on screen during the running of the

7Exactly this type of interchange was the driving factor behind the organisation of the workshop
from which the papers in this symposium are derived.

8As an analogy, consider a racing car and a tractor. At a first, and basic, level of description
(motorised vehicles, with internal combustion engines and four wheels), they might look similar.
But they are used for completely different things, and we would expect that the law would treat
them differently.

9Of course readers may well object, citing other examples of copyright protected works that
are embodied in functional objects (e.g. architechtual plans for buildings). But the visual image
of buildings are consumed in the same way as works of authorship. I consider that software is
more akin to the design of internal electrical circuitry (which is designed for functionality rather
than estetic image) than the plans for the external appearance of a building. And if the design
plans for internal wiring are also protected by copyright, then I would suggest that perhaps they
should not!

12 RICHARD WATT

programme, and other such pleasantries are clearly aspects that are purely intended
for entertainment rather than pure functionality. These are rather clearly copyright
subject matter.
I am certainly not the first to consider that patent alone, or at least some-

thing closer to patent than to copyright, might be a more appropriate protection
mechanism for copyright. Although it falls short of advocating patent as a pro-
tection mechanism for software, at the heart of much of the paper by Samuelson
et al. (1994) is an implicit argument that suggests that software is more akin to
patentable, rather than copyrightable, subject material.10 In that path-breaking
paper, we find quotes such as “... the primary source of value in a program is its
behavior, not its text.” (Samuelson et al., 1994, p. 2315), and “... programs are,
in fact, machines (entities that bring about useful results, i.e. behavior) that have
been constructed in the medium of text (source and object code).” (Sameulson et
al., 1994, p. 2316). The question to address is why then do not Samuelson et al.
end up advocating patent alone as the best protection mechanism for software. The
answer is only because of the innovative step requirement in current patent law; “...
patent law requires an inventive advance over the prior art before it grants protec-
tion. Protecting incremental innovations in program behavior through patent law
would thwart the economic goals of the patent system: to grant exclusive rights only
when an innovator has made a substantial contribution to the art and advanced
competition to a new level.” (Samuelson et al., 1994, p.2346). I agree, but in the
end it seems to me that patent needs far less tweaking (clearly we would need to
lower the innovative step requirement, and possibly also the duration of protection
for the special case of software) than does copyright to accommodate software.
In spite of my opinion that software is closer to patent than copyright, the patent

system as it stands would almost certainly not be appropriate. Both the current
innovative step requirement and the duration would need to be addressed for patent
protection of software. Also, regulators should be careful about interoperability
being used to consumers’ disadvantage, and so may have to alter the type of patent
protection afforded to software from what is given to other types of innovation. So
my way of looking at the issue can be seen to be a sort of sui generis solution,
although it can also be accommodated within a version of the clean-slate approach,
but with hardly any input from the current copyright regime.
In keeping with the basic theoretical efficiency underpinnings of the patent sys-

tem, in exchange for this special type of patent protection, rights holders would be
required to divulge source code information on their programme,11 as parts of it
may be useful for other programmers to develop completely different applications.12

So long as the new application does not compete with the existing (patented) one,

10Also, Karjala (1998, p. 43) argues “Copyright protection for most program innovation would
be much worse than whatever comes out of patent, because copyright was not designed for, and
indeed is ill-suited to, the protection of technology”

11Of course, divulging source code when a programme is patented appears to leave it entirely
open to copying in its entirety, perhaps rendering the protection useless in practice. But computers
only understand object code, not source code, and object code could remain hidden (perhaps using
DRM type features). Anyone wanting to reproduce the programme, would firstly have to re-write
the object code from the source code, something that most software users would not be able to
do anyway.

12Full disclosure in return for patent protection is, of course, a more efficient outcome than
reverse engineering, a most wasteful proceedure under which resources are spent to rediscover
things that already exist.

PATENT AND/OR COPYRIGHT FOR SOFTWARE: WHAT HAS BEEN DONE SO FAR? 13

there is no obvious reason why the current patent holder’s welfare would be di-
minished by the use of a part of his source code in the development of the new
application. Of course, arguments can, and would, be voiced based upon one per-
son’s efforts in developing code being used gratuitously by others for economic gain,
but this is no different from what happens in other innovative processes that are
patent protected and divulged. The first innovator would have written his code
with the objective that the particular application that he wanted to achieve works
properly, and any other use of this code is, in a sense, purely accidental or fortuitous
rather than foreseen by the original programmer, and thereby it is not deserving of
financial remuneration. If a particular sub-routine or partial string of code within
the entire piece of software that leads to the original application were worthwhile as
a stand-alone patentable object (i.e. it would have to have proven applicability for
the improvement of other programmes, and be clearly defined as the solution to a
given problem), then there is no reason why it could not be patented as a separate
entity to the application that it leads to. In this case, new applications that make
use of this subroutine would, of course, have to license it from the patent holder.
The possibility of patentability of software has lead to a large group of lobby or-

ganisations, whose principal argument seems to be that patenting of software would
lead to anti-competitive behaviour, involving large corporations stifling small com-
panies (see, for example, the material on the website http://www.nosoftwarepatents.
com). However, Mann (2004) looks at the issue of licensing of software patents, and
provides information that seems to fly in the face of such arguments. Mann suggests
at least two reasons why patenting of software might not lead to anti-competitive
behaviour. Firstly, it turns out that most firms do not rely upon patents to establish
themselves anyway (“. . . about 80% of venture-backed software firms do not obtain
patents during the early years of their existence.”(Mann 2004, abstract)), and that
patents are not used strategically as an entry deterrent; “Incumbents . . . rarely use
patents to exclude smaller firms from the market.” (Mann 2004, abstract). Mann’s
conclusion is that software patents are beneficial to small, not large, software firms,
giving them bargaining leverage, signalling their technical competence, and making
the firm attractive to potential acquirers. In a nutshell, patents are seem to pri-
marily benefit smaller firms trying to find a foothold from which they can compete.
Mann notes that “. . . existing practices in the industry suggest that technology
is readily available, rebutting the prominent claims of a patent ‘thicket’ that is
supposedly stifling innovation in the industry.” (Mann 2004, abstract).

5. Conclusion

In this paper, I have taken an exploratory look at the current debate concerning
the extension of IP protection of software from its traditional copyright, to include
patent as well. There exist a series of arguments, primarily in the legal litera-
ture, that advocate different solutions ranging from the total exclusion of patent,
through partial inclusion under a sui generis regime, to an argument based on the
total overhaul of the current copyright-patent system. Economists, however, have
had little input to this debate. In lieu of solid economic analysis on the appropriate
structure of IP protection for software, I have offered a personal opinion, which is
based on the idea that software is far more like an innovative input to productive
processes than a work of authorship. That opinion leads to a system that appears,

14 RICHARD WATT

at first sight, to be rather more provocative than what legal scholars have sug-
gested. Where the legal literature typically suggests either leaving software to be
protected only by copyright, or perhaps melding some patent aspects into a copy-
right framework, I see it more appropriate to start with a basic patent model, and
alter some of the details of the parameters of protection, but not always along the
lines of copyright. I suggest shortening, rather than lengthening, of basic patent
protection for software (i.e. not at all like copyright), but I would also suggest
that the innovative step of current patent law be lessened for the particular case of
software (i.e. a bit more like copyright).

References

Barwolff, M. (2002), “Beyond Copyright and Patents for Software”, mimeo. Available online
at http://ig.cs.tu-berlin.de/ma/mb/ap/2002/Baerwolff-Beyond-2002.pdf

Baseman, K.C., F.R. Warren-Boulton and G.A. Woroch (1995), “The Economics of
Intellectual Property Protection for Software: The Proper Role for Copyright.” Working Pa-
per Industrial Organization Number 9411004, Economic Department of Washington University.
Available online at http://ideas.uqam.ca/ideas/data/Papaers/wpawuwpio9411004.html.

Dreyfuss, R.C. (1993), “A Wiseguy’s Approach to Information Products: Muscling Copyright
and Patent Into a Unitary Theory of Intellectual Property,” Supreme Court Review 1992 ; 195-
234.

Einhorn, D.A. (1990), “Copyright and Patent Protection for Computer Software: Are
They Mutually Exclusive?”, The Journal of Law and Technology, 265-78. Available online at
http://www.idea.piercelaw.edu/articles/30/p265.Einhorn.pdf.

Ginsburg, J. (1994), “Four Reasons and a Paradox: The Manifest Superiority of Copyright Over
sui generis Protection of Computer Software,” Columbia Law Review, December, 2559-2307.

Karjala, D. (1998), “The Relative Roles of Patent and Copyright in the Protection of Computer
Programs”, John Marshall Journal of Computer and Information Law, Fall; 41-74.

Klemperer, P. (2004), “America’s Patent Protection Has Gone Too Far”, Financial Times,
March 2, 2004.

Mann, R. (2004), “The Myth of the Software Patent Thicket”, University of Texas School
of Law Working paper. Available online at http://www.utexas.edu/law/academics/centers/
clbe/assets/022.pdf.

Reichman, J. (1994), “Legal Hybrids Between the Patent and Copyright Paradigms,” Columbia
Law Review, December, 2432-2558.

Samuelson, P., R. Davis, M. Kapor and J. Reichman (1994), “A Manifesto Concerning
the Legal Protection of Computer Programs,” Columbia Law Review, December, 2308-2429.

Widdison, R. (2000), “Software Patents Pending?”, Journal of Information, Law
and Technology, issue 3 (available online at http://www2.warwick.ac.uk/fac/soc/law/elj/
jilt/2000_3/widdison/).

Richard Watt; E-mail: richard@serci.org.

